Increased Right Ventricular Repolarization Gradients Promote Arrhythmogenesis in a Murine Model of Brugada Syndrome
نویسندگان
چکیده
INTRODUCTION Brugada syndrome (BrS) is associated with loss of Na(+) channel function and increased risks of a ventricular tachycardia exacerbated by flecainide but reduced by quinidine. Previous studies in nongenetic models have implicated both altered conduction times and repolarization gradients in this arrhythmogenicity. We compared activation latencies and spatial differences in action potential recovery between different ventricular regions in a murine Scn5a+/- BrS model, and investigated the effect of flecainide and quinidine upon these. METHODS AND RESULTS Langendorff-perfused wild-type and Scn5a+/- hearts were subjected to regular pacing and a combination of programmed electrical stimulation techniques. Monophasic action potentials were recorded from the right (RV) and left ventricular (LV) epicardium and endocardium before and following flecainide (10 μM) or quinidine (5 μM) treatment, and activation latencies measured. Transmural repolarization gradients were then calculated from the difference between neighboring endocardial and epicardial action potential durations (APDs). Scn5a+/- hearts showed decreased RV epicardial APDs, accentuating RV, but not LV, transmural gradients. This correlated with increased arrhythmic tendencies compared with wild-type. Flecainide increased RV transmural gradients, while quinidine decreased them, in line with their respective pro- and antiarrhythmic effects. In contrast, Scna5+/- hearts showed slowed conduction times in both RV and LV, exacerbated not only by flecainide but also by quinidine, in contrast to their differing effects on arrhythmogenesis. CONCLUSION We use a murine genetic model of BrS to systematically analyze LV and RV action potential kinetics for the first time. This establishes a key role for accentuated transmural gradients, specifically in the RV, in its arrhythmogenicity.
منابع مشابه
Drug-induced spatial dispersion of repolarization.
Spatial dispersion of repolarization in the form of transmural, trans-septal and apico-basal dispersion of repolarization creates voltage gradients that inscribe the J wave and T wave of the ECG. Amplification of this spatial dispersion of repolarization (SDR) underlies the development of life-threatening ventricular arrhythmias associated with inherited or acquired ion channelopathies giving r...
متن کاملRight ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study.
BACKGROUND The mechanism of ECG changes and arrhythmogenesis in Brugada syndrome (BS) patients is unknown. METHODS AND RESULTS A BS patient without clinically detected cardiac structural abnormalities underwent cardiac transplantation for intolerable numbers of implantable cardioverter/defibrillator discharges. The patient's explanted heart was studied electrophysiologically and histopatholog...
متن کاملReduced Na+ and higher K+ channel expression and function contribute to right ventricular origin of arrhythmias in Scn5a+/− mice
Brugada syndrome (BrS) is associated with ventricular tachycardia originating particularly in the right ventricle (RV). We explore electrophysiological features predisposing to such arrhythmic tendency and their possible RV localization in a heterozygotic Scn5a+/- murine model. Na(v)1.5 mRNA and protein expression were lower in Scn5a+/- than wild-type (WT), with a further reduction in the RV co...
متن کاملRight Ventricular Fibrosis and Conduction Delay in a Patient With Clinical Signs of Brugada Syndrome
Background—The mechanism of ECG changes and arrhythmogenesis in Brugada syndrome (BS) patients is unknown. Methods and Results—A BS patient without clinically detected cardiac structural abnormalities underwent cardiac transplantation for intolerable numbers of implantable cardioverter/defibrillator discharges. The patient’s explanted heart was studied electrophysiologically and histopathologic...
متن کاملCardiac electrophysiological substrate underlying the ECG phenotype and electrogram abnormalities in Brugada syndrome patients.
BACKGROUND Brugada syndrome (BrS) is a highly arrhythmogenic cardiac disorder, associated with an increased incidence of sudden death. Its arrhythmogenic substrate in the intact human heart remains ill-defined. METHODS AND RESULTS Using noninvasive ECG imaging, we studied 25 BrS patients to characterize the electrophysiological substrate and 6 patients with right bundle-branch block for compa...
متن کامل